Bioactive natural products synthesis

Dong group at UT Austin Xuan Zhou 03/13/2014

O

0

CO₂Me

J. Am. Chem. Soc, 2014, 136,870-873

Science, 2013, 339, 59-63

[.]Η (-)-Calyciphylline N (1)

Phil S. Baran

- Born on 10 August 1977, in Denville, New Jersey, USA
- B.S. with Honors in Chemistry Advisor: Prof. D.I. Schuster, New York University (1995-1997)
- Ph.D. in Chemistry Advisor: Prof. K.C. Nicolaou, The Scripps Research Institute (1997-2001)
- Postdoctoral Associate Advisor: Prof. E.J. Corey, Harvard University (2001-2003)
- Assistant Professor of Chemistry, The Scripps Research Institute June 2003
- Associate Professor of Chemistry (with tenure), The Scripps Research Institute July 2006

Publications of *Phil S. Baran*

More than 90 papers were published from 2004 to now, include 30 JACS, 25 Angew. Chem and 10 Nature, Science, Nature Chem, PNAS papers.

1. Protecting groups free synthesis of natural products

Proposed biosynthetic relationships of welwitindolinone alkaloid families

Only 5 mg isolated, in yields Ranging from 0.00671% (for 2) To 0.0213% (for 5)

Total synthesis of hapalindole U and ambiguine H

Total synthesis of welwitindolinone A and fischerindole I

Why this work worth Nature?

- Biomimetic synthesis
- Short synthesis route (7-10 total steps)
- •Gram scale synthesis compare to 0.0067% (2) and 0.0213% (5) isolated yield
- Protecting groups free total synthesis of complex natural product

2. Total synthesis of eudesmane terpenes by site -selective C-H oxidations

- Over 55,000 members of terpenes isolated so far, have long history provided human with flavours, fragrances, hormones, medicines.
- Eduesmane family of terpenes containing over 1000 members, most are in high oxidation state
- difficult targets for synthesis, only 4 has been prepared

Nature, 2009, 459,824-828

J. Am. Chem. Soc, 2008, 130, 7247-7249

Gram scale total synthesis of dihydrojunenol

Nature, 2009, 459,824-828

total synthesis of dihydroxyeudesmane

total synthesis of prgmol and eudesmantetraol

Why nature?

- biomimetic "two-phase" concept
 cheap SM and high yield gram scale synthesis
- Site –selective oxidations in complex natural product total synthesis
- four compound in one synthesis route, three are first reported

Compound 4, 6, 7, 8 were respectively Constructed in 9, 12, 13 and 15 steps in 21, 9, 9 and 4% overall yield.

Scalable enantioselective total synthesis of taxanes

Nature chem. 2012, 4, 21-25

Scalable enantioselective total synthesis of taxanes

7 steps 20% overall yield

From nature chem to nature?

- Gram scale synthesis, short synthesis route and high yield
- Rapid synthesis
- Intermediate of Taxol

Angew. Chem. Int. Ed. 2008, 47, 1272

- Treatment for congrestive heart failure
- Scalable synthesis complex steroid is unknow
- Drug activity relationship studies is rare

н

H

OH

OH

Science, 2013, 339, 59-63

Biomimetic synthesis of ouabagenin

Science, 2013, 339, 59-63

14-step synthesis of (+)-Ingenol from (+)-3-Carene

Science, **2013**, *341*,878-883

Biosynthetic inspiration and retrosynthetic analysis

Science, 2013, 341,878-883

14-step synthesis of (+)-Ingenol from (+)-3-Carene

[Cyclase Phase]: 7 steps, 7 C–C bonds, 5 stereocenters

14-step synthesis of (+)-Ingenol from (+)-3-Carene

- FDA approved drug as target
- Cyclase\Oxidase Phase biomimetic synthesis
- Large scale synthesis
- 14 steps compare to previous 37-40 steps
- •1.1% overall yield compare to 0.028% isolated yield

Science, 2013, 341,878-883

Top 18 best sell drugs in 2012

9/12 Heterocyclic compound, 4/12 contain F, 6/18 monoclonal antibody

Practical and innate carbon-hydrogen functionalization of heterocycles

Proc. Natl Acad. Sci. USA. 2011, 108, 14411-14425

A new reagent for direct difluoromethylation

Figure 2 | The synthesis of zinc bis(alkanesulfinate) reagents.

J. Am. Chem. Soc, **2012**, *134*, 1494-1497 Nature protocols, **2013**, *8*, 1042-1043

Practical and innate carbon-hydrogen functionalization of heterocycles

Nature, 2012, 492, 95-100

Substrate scope of the zinc sulphinate salt toolkit

leter	rocycle	Upen tiask, operational simplicity, >50 examples Zn salt, R						
		CF ₂ (A)	CE ₂ H (B)	CH ₂ CF ₃ (C)	CH ₂ F (D)	CH(CH ₃) ₂ (E)	(CH ₂ CH ₂ O) ₂ CH ₂ (F	
L		89 (100)† 1A	73 (57)†§§ 1B	51# 1C	80# 1D	41** 1E	40†† 1F	
2		79 (100)† 2A	72 (41)†§§ 2B	44# 2C	75# 2D	37** 2E	49†† 2F	
		35 (77)† [4:1 C2:C3] 3A	66 (100)† [only C2] 3B	18 (85)# [4:1 C2:C3] 3C	73¶‡‡ [17:1 C2:C2&C6] 3D	47§ [C2:C2&C6 1.4:1] 3E	41†† [only C2] 3F	
	² H H Me Me Br	66 (65)†§§ [2.3:1 C6:C2] 4A	60 (96)† [C2:C6:C4 3:2:1] 4B	33# [1.4:1 C6:C4] 4C	NR 4D	41†† [only C6] 4E	NR 4F	
		75 (100)† [5 products]	50 (67)†	31 (77)‡	56#	43**	32**	
	N Me	42 (44)∥ [2.7:1 C4:C5] 6A	21 (44)∥ [1.6:1 C4:C5] 6B	21** [only C5] 6C	NR 6D	46** [2.1:1 C4:C5] 6E	16†† [3.4:1 C4:C5] 6F	
		45 (90)∥ [only C4] 7A	57 (71)∥ [6:1 C4:C5] 7B	NR 7C	NR 7D	49** [10:1C4:C5] 7E	32 (38)†† [only C4] 7F	
	CI N N N N N N N N N N N N N N N N N N N	76 (91)† [7.4:1 C2:C5] 8A	65 (100)† [only C2] 8B	58** [1.4:1 C2:C5] 8C	40§ [only C2] 8D	17** [only C2] 8E	10 (43)†† [only C2] 8F	

50/52 have not been reported before!

Substrate scope of the zinc sulphinate salt toolkit

b

- C-H fuctionalization of medicinally important hetercycles
- Ten different Zinc sulphinate compound developed four of them are available from Sigma-Aldrich
- Mide reaction conditions
- Now widely used in medicinal chemistry (Pfizer)

Summary

- industrial)
- Biomimetic synthesis (protecting group free/cyclo-oxid phase)
- Large scale synthesis
- More efficient synthesis route (multiple compound in one synthesis route/ high yield/shorter steps)
- Useful chemistry (Publish papers and earn money)

Thanks!

